![]() 導電性氧化物及其製造方法與氧化物半導體膜
专利摘要:
本發明之導電性氧化物係含有In、Al、選自由Zn及Mg所組成之群中之至少1種元素M、及O,且含有晶質Al2MO4。本發明之導電性氧化物之製造方法係包含如下步驟:當將選自由Zn及Mg所組成之群中之至少1種元素設為M時,製備含有Al2O3粉末與MO粉末之第1混合物之步驟(S10);藉由鍛燒第1混合物而製作晶質Al2MO4粉末之步驟(S20);製備含有晶質Al2MO4粉末與In2O3粉末之第2混合物之步驟(S30);藉由將第2混合物成形而獲得成形體之步驟(S40);及對成形體進行燒結之步驟(S50)。藉此,可提供一種價格低廉且可較佳地用於濺鍍之靶而獲得高物性之氧化物半導體膜的導電性氧化物及其製造方法與氧化物半導體膜。 公开号:TW201305371A 申请号:TW101121654 申请日:2012-06-15 公开日:2013-02-01 发明作者:Miki Miyanaga;Koichi Sogabe;Hideaki Awata;Hiroshi Okada;Masashi Yoshimura 申请人:Sumitomo Electric Industries; IPC主号:C01G9-00
专利说明:
導電性氧化物及其製造方法與氧化物半導體膜 本發明係關於一種導電性氧化物及其製造方法與氧化物半導體膜,尤其是關於一種用於利用濺鍍法形成氧化物半導體膜時之靶的導電性氧化物及其製造方法。 於液晶顯示裝置、薄膜EL(Electro-luminescence,電致發光)顯示裝置、有機EL顯示裝置等中,先前之TFT(Thin Film Transistor,薄膜電晶體)之通道層主要使用非晶質矽膜。近年來,作為替代非晶質矽膜之半導體膜,以In-Ga-Zn系複合氧化物(IGZO)為主成分之氧化物半導體膜受到關注。 例如,於日本專利特開2008-199005號公報(專利文獻1)中,揭示有利用使用包含顯示導電性之氧化物粉末之燒結體的靶之濺鍍法,而形成非晶質之氧化物半導體膜之技術。以此種方式所形成之氧化物半導體膜與非晶質矽膜相比,具有載子之移動率較大之優點。 詳細敍述日本專利特開2008-199005號公報(專利文獻1)中所揭示之濺鍍法,首先,於濺鍍裝置內將靶與基板對向配置。繼而,對靶施加電壓而於靶表面濺鍍稀有氣體離子,使靶之構成原子飛出。使該靶之構成原子沈積於基板上,藉此形成IGZO(In-Ga-Zn-O系複合氧化物)膜。 作為用於利用濺鍍法較佳地製作該IGZO膜之靶,日本專利特開2008-214697號公報(專利文獻2)中揭示有將以InGaZnO4表示之化合物作為主成分,且含有正四價以上之金屬元素的濺鍍靶。 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開2008-199005號公報 [專利文獻2]日本專利特開2008-214697號公報 然而,如日本專利特開2008-199005號公報(專利文獻1)及日本專利特開2008-214697號公報(專利文獻2)所揭示的IGZO之濺鍍靶由於含有昂貴之Ga,故而價格較高。因此,要求開發出一種與IGZO相比價格低廉,且可較佳地用於濺鍍靶而獲得高物性之氧化物半導體膜的導電性氧化物。 本發明之目的在於提供一種價格低廉且可較佳地用於濺鍍之靶而獲得高物性之氧化物半導體膜的導電性氧化物及其製造方法與氧化物半導體膜。 根據本發明之某一態樣,本發明係一種導電性氧化物,其含有In、Al、選自由Zn及Mg所組成之群中之至少1種元素M、及O,且含有晶質Al2MO4。 於本發明之導電性氧化物中,可含有晶質Al2ZnO4作為晶質Al2MO4。此處,可將晶質Al2ZnO4於導電性氧化物之剖面面積中所占之比例設為10%以上60%以下。此處,可進而含有選自由晶質In2Al2(1-m)Zn1-qO7-p(0≦m<1、0≦q<1、0≦p≦3m+q)及晶質In2O3所組成之群中之至少1種晶質。 於本發明之導電性氧化物中,可含有晶質Al2MgO4作為晶質Al2MO4。此處,可將晶質Al2MgO4於導電性氧化物之剖面面積中所占之比例設為2%以上60%以下。此處,可進而含有選自由晶質In2Al2(1-n)Mg1-tO7-s(0≦n<1、0≦t<1、0≦s≦3n+t)及晶質In2O3所組成之群中之至少1種晶質。 於本發明之導電性氧化物中,將In、Al及M之合計之原子比率設為100原子%時,可含有10~50原子%之In、10~50原子%之Al、及15~40原子%之M。又,可進而含有選自由N、Al、Si、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、W、Sn及Bi所組成之群中之至少1種添加元素。 本發明之導電性氧化物可用於濺鍍法之靶。 根據本發明之另一態樣,本發明係一種氧化物半導體膜,其係使用如上述所記載之導電性氧化物而形成者。 進而根據本發明之進而另一態樣,本發明係一種導電性氧化物之製造方法,其包含如下步驟:當將選自由Zn及Mg所組成之群中之至少1種元素設為M時,製備含有Al2O3粉末與MO粉末之第1混合物之步驟;藉由鍛燒第1混合物而製作晶質Al2MO4粉末之步驟;製備含有晶質Al2MO4粉末與In2O3粉末之第2混合物之步驟;藉由將第2混合物成形而獲得成形體之步驟;及對成形體進行燒結之步驟。 於本發明之導電性氧化物之製造方法中,可將MO粉末設為ZnO粉末,將晶質Al2MO4粉末設為晶質Al2ZnO4粉末,將製作晶質Al2ZnO4粉末之步驟中第1混合物之鍛燒溫度設為800℃以上且未達1200℃,將對成形體進行燒結之步驟中成形體之燒結溫度設為1280℃以上且未達1500℃。 於本發明之導電性氧化物之製造方法中,可將MO粉末設為MgO粉末,將晶質Al2MO4粉末設為晶質Al2MgO4粉末,將製作晶質Al2MgO4粉末之步驟中第1混合物之鍛燒溫度設為800℃以上且未達1200℃,將對成形體進行燒結之步驟中成形體之燒結溫度設為1300℃以上1500℃以下。 根據本發明,可提供一種價格低廉且可較佳地用於濺鍍之靶而獲得高物性之氧化物半導體膜的導電性氧化物及其製造方法與氧化物半導體膜。[導電性氧化物] 作為本發明之一實施形態的導電性氧化物係含有In、Al、選自由Zn及Mg所組成之群中之至少1種元素M、及O,且含有晶質Al2MO4。本實施形態之導電性氧化物由於係含有In、Al、選自由Zn及Mg所組成之群中之至少1種元素M、及O,故而並不含IGZO中所含之昂貴之Ga,因此與IGZO相比價格低廉。又,本實施形態之導電性氧化物由於含有晶質Al2MO4,因此藉由以導電性氧化物作為靶之濺鍍所獲得的氧化物半導體膜之特性穩定。於晶質Al2MO4中,由於對應M之Zn與Mg之原子價均為+2,且離子半徑極為近似,因此晶質Al2ZnO4與晶質Al2MgO4均具有尖晶石型之結晶結構。 於本實施形態之導電性氧化物中,較佳為含有晶質Al2ZnO4作為晶質Al2MO4。藉由含有晶質Al2ZnO4,可使藉由以導電性氧化物作為靶之濺鍍所獲得的氧化物半導體膜之特性穩定,且可提高其蝕刻速率。因此,含有晶質Al2ZnO4之導電性氧化物可較佳地作為用於利用濺鍍法形成氧化物半導體膜之靶而使用。 此處,晶質Al2ZnO4於含有晶質Al2ZnO4之導電性氧化物的剖面面積(係指以導電性氧化物之任一個面切斷時之剖面的面積,以下相同)中所占之比例較佳為10%以上60%以下,更佳為14%以上50%以下。若晶質Al2ZnO4於導電性氧化物之剖面面積中所占之比例低於10%,則藉由以該導電性氧化物作為靶之濺鍍所獲得的氧化物半導體膜之特性會變得不穩定且蝕刻速率降低。若晶質Al2ZnO4於導電性氧化物之剖面面積中所占之比例高於60%,則藉由以該導電性氧化物作為靶之濺鍍所獲得的氧化物半導體膜之表面粗糙度Ra變得粗糙。 晶質Al2ZnO4於含有晶質Al2ZnO4之導電性氧化物的剖面面積中所占之比例可藉由EDX(能量分散型X射線分析)法而求出。更具體而言,觀察照射至導電性氧化物之試樣剖面之入射電子束自其剖面反射之電子(反射電子像)。然後,對於對比度不同之區域進行螢光X射線分析而確定晶質Al2ZnO4之區域,藉此可測定晶質Al2ZnO4之區域之面積於剖面面積中所占之比例。又,表面粗糙度Ra係指JIS B0601:2001中所規定之算術平均粗糙度Ra,可藉由AFM(原子力顯微鏡)等測定。 又,含有晶質Al2ZnO4之導電性氧化物較佳為進而含有選自由晶質In2Al2(1-m)Zn1-qO7-p(0≦m<1、0≦q<1、0≦p≦3m+q)及晶質In2O3所組成之群中之至少1種晶質。藉由含有晶質In2Al2(1-m)Zn1-qO7-p,可使藉由以導電性氧化物作為靶之濺鍍所獲得的氧化物半導體膜之表面粗糙度Ra變得細微。藉由含有晶質In2O3,導電性氧化物之熱導率上升,因此將導電性氧化物作為靶而實施直流濺鍍時放電穩定。並且,可提高藉由以導電性氧化物作為靶之濺鍍所獲得的氧化物半導體膜之場效遷移率。 於含有晶質Al2ZnO4之導電性氧化物中,晶質Al2ZnO4、晶質In2Al2(1-m)Zn1-qO7-p及晶質In2O3之存在可根據藉由ICP(電感耦合電漿)光譜分析所求出之化學組成、與藉由X射線繞射所鑑定之晶相而確認。例如,可根據晶質In2Al2(1-m)Zn1-qO7-p之X射線繞射波峰與晶質In2Al2Zn1O7之X射線繞射波峰相比係向高角側偏移,而確認晶質In2Al2(1-m)Zn1-qO7-p之存在。再者,晶質Al2ZnO4具有尖晶石型之結晶結構,晶質In2Al2(1-m)Zn1-qO7-p具有六方晶系之結晶結構,晶質In2O3具有立方晶系之結晶結構。 又,於本實施形態之導電性氧化物中,較佳為含有晶質Al2MgO4作為晶質Al2MO4。藉由含有晶質Al2MgO4,可使藉由以導電性氧化物作為靶之濺鍍所獲得的氧化物半導體膜之特性穩定,且可提高氧化物半導體膜之場效遷移率。因此,含有晶質Al2MgO4之導電性氧化物可較佳地作為用於利用濺鍍法形成氧化物半導體膜之靶而使用。 此處,晶質Al2MgO4於含有晶質Al2MgO4之導電性氧化物的剖面面積中所占之比例較佳為2%以上60%以下,更佳為5%以上20%以下。藉由使用以上述面積比例含有晶質MgAl2O4之導電性氧化物作為濺鍍之靶,可製作場效遷移率較高之氧化物半導體膜。又,於含有晶質Al2MgO4之導電性氧化物進而含有晶質In2O3之情形時,晶質In2O3於導電性氧化物之剖面面積中所占之比例較佳為40%以上98%以下,更佳為40%以上60%以下。藉由使用以上述面積比例含有晶質In2O3之導電性氧化物作為濺鍍之靶而製作氧化物半導體膜,可製作場效遷移率較高之氧化物半導體膜。 此處,晶質Al2MgO4及晶質In2O3於導電性氧化物之剖面面積中所占之比例係以如下方式而算出。首先,藉由X射線繞射確認晶質Al2MgO4及晶質In2O3之波峰。繼而,以任意之面切斷導電性氧化物。對該導電性氧化物之切斷面照射入射電子束,使用分析型掃描式電子顯微鏡觀察自其剖面反射之電子(反射電子像)。對該反射電子像中對比度不同之區域進行螢光X射線分析,藉此將主要觀察到Al與Mg之區域確定為晶質Al2MgO4,將僅觀察到In之波峰之區域確定為晶質In2O3。如此,算出晶質MgAl2O4及晶質In2O3之面積於剖面中所占之比例。 又,含有晶質Al2MgO4之導電性氧化物較佳為進而含有選自由晶質In2Al2(1-n)Mg1-tO7-s(0≦n<1、0≦t<1、0≦s≦3n+t)及晶質In2O3所組成之群中之至少1種晶質。 藉由含有晶質In2Al2(1-n)Mg1-tO7-s,可提高藉由以導電性氧化物作為靶之濺鍍所獲得的氧化物半導體膜之場效遷移率。此種晶質In2Al2(1-n)Mg1-tO7-s係藉由以特定之條件將晶質In2Al2MgO7與晶質Al2MgO4之結晶粉末混合而改質,使晶質In2Al2MgO7中之Al及Mg缺損而形成。若如此般Al及Mg缺損(即若n及t均為n>0、t>0),則亦存在與該缺損之化學計量比對應地,氧之原子比取小於「7」之值(即s>0)的情況。藉由使用含有此種晶質In2Al2(1-n)Mg1-tO7-s之導電性氧化物作為濺鍍之靶而製作氧化物半導體膜,可製作場效遷移率較高之氧化物半導體膜。 雖然難以直接算出上述晶質In2Al2(1-n)Mg1-tO7-s中之n及t之值,但可確認有無晶質In2Al2(1-n)Mg1-tO7-s存在。確認有無晶質In2Al2(1-n)Mg1-tO7-s存在係藉由ICP光譜分析求出導電性氧化物之組成,並且藉由X射線繞射鑑定晶相而進行。例如,當儘管藉由ICP光譜分析確定導電性氧化物中In:Al:Mg之原子濃度比率為2:2:1,但藉由X射線繞射確認導電性氧化物中存在In2Al2MgO7時,判斷為於導電性氧化物中,與晶質Al2MgO4一起存在晶質In2Al2(1-n)Mg1-tO7-s(0<n<1、0<t<1、0≦s≦3n+t)。又,當藉由X射線繞射確認存在晶質之In2O3、In2Al2MgO7及Al2MgO4時,將藉由ICP光譜分析所求出之組成、與根據藉由分析型電子顯微鏡求出之In2O3、In2Al2MgO7、Al2MgO4之面積比例而理解之組成加以對比,若產生AlMg不足,則亦認為存在In2Al2(1-n)Mg1-tO7-s。 藉由含有晶質In2O3,導電性氧化物之熱導率上升,因此將導電性氧化物作為靶而實施直流濺鍍時放電穩定。並且,可提高藉由以導電性氧化物作為靶之濺鍍所獲得的氧化物半導體膜之場效遷移率。 於含有晶質Al2MgO4之導電性氧化物中,晶質Al2MgO4、晶質In2Al2(1-n)Mg1-tO7-s及晶質In2O3之存在可根據藉由ICP光譜分析所求出之化學組成、與藉由X射線繞射所鑑定之晶相而確認。例如,可根據晶質In2Al2(1-n)Mg1-tO7-s之X射線繞射波峰與晶質In2Al2Mg1O7之X射線繞射波峰相比係向高角側偏移,而確認晶質In2Al2(1-n)Mg1-tO7-s之存在。再者,晶質Al2MgO4具有尖晶石型之結晶結構,晶質In2Al2(1-n)Mg1-tO7-s具有六方晶系之結晶結構,晶質In2O3具有立方晶系之結晶結構。 本實施形態之導電性氧化物中,將In、Al及M之合計之原子比率設為100原子%時,較佳為含有10~50原子%之In、10~50原子%之Al、15~40原子%之M。如此之原子比率的導電性氧化物價格低廉且可較佳地用於濺鍍之靶而獲得高物性(例如,蝕刻速率較大,場效遷移率較高等)之氧化物半導體膜。 本實施形態之導電性氧化物較佳為進而含有選自由N、Al、Si、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、W、Sn及Bi所組成之群中之至少1種添加元素,更佳為含有0.1×1022 atm/cc以上5.0×1022 atm/cc以下之該等添加元素。即,本實施形態之導電性氧化物中所含之添加元素整體之濃度較佳為0.1×1022 atm/cc以上5.0×1022 atm/cc以下。此處,導電性氧化物中所含之添加元素及原子濃度可藉由SIMS(二次離子質譜分析)進行測定。 本實施形態之導電性氧化物可較佳地用於濺鍍法之靶。此處,所謂「濺鍍法之靶」,係將用於利用濺鍍法成膜之材料加工成板狀者、或將該板狀之材料貼附於背襯板(用以貼附靶材之背板)上者等的總稱,背襯板可使用無氧銅、鋼、不鏽鋼、鋁、鋁合金、鉬、鈦等原材料製作。上述靶之形狀並無特別限定,可為圓形,亦可為方形。又,關於靶之大小,可為直徑1 cm之圓板狀(平板圓形),亦可為如大型LCD(液晶顯示裝置)用之濺鍍靶般直徑超過2 m之方形(平板矩形)。 [氧化物半導體膜] 作為本發明之另一實施形態之氧化物半導體膜係使用上述實施形態之導電性氧化物所形成者,較佳為將上述實施形態之導電性氧化物用於靶,利用濺鍍法所形成者。由於本實施形態之氧化物半導體膜係使用上述實施形態之導電性氧化物所形成,因此其特性穩定且其蝕刻速率提高,及/或其場效遷移率變高。再者,濺鍍法係指如下方法:於濺鍍裝置內將靶與基板對向配置,對靶施加電壓而於靶表面濺鍍稀有氣體離子,使靶之構成原子飛出,且使該靶之構成原子沈積於基板上,藉此形成氧化物半導體膜。 [導電性氧化物之製造方法] 參照圖1,作為本發明之進而另一實施形態的導電性氧化物之製造方法係包含如下步驟者:當將選自由Zn及Mg所組成之群中之至少1種元素設為M時,製備含有Al2O3粉末與MO粉末之第1混合物之步驟(S10);藉由鍛燒第1混合物而製作晶質Al2MO4粉末之步驟(S20);製備含有晶質Al2MO4粉末與In2O3粉末之第2混合物之步驟(S30);藉由將第2混合物成形而獲得成形體之步驟(S40);及對成形體進行燒結之步驟(S50)。 根據本實施形態之導電性氧化物之製造方法,藉由包含上述步驟,可高效率地製造可較佳地用於形成半導體氧化物膜且價格低廉之導電性氧化物,更詳細而言,可高效率地製造可較佳地用於用以利用濺鍍法形成氧化物半導體膜之靶且價格低廉之導電性氧化物。 (第1混合物之製備步驟) 當將選自由Zn及Mg所組成之群中之至少1種元素設為M時,製備含有Al2O3粉末與MO粉末之第1混合物之步驟(S10)係藉由混合作為原料粉末之Al2O3粉末與MO粉末(即ZnO粉末及/或MgO粉末)而進行。此處,Al2O3粉末及MO粉末之純度並無特別限制,就提高所製造之導電性氧化物之品質之觀點而言,較佳為99.9質量%以上,更佳為99.99質量%以上。又,Al2O3粉末與MO粉末之混合比例並無特別限制,就提高晶質Al2MO4粉末之產率之觀點而言,較佳為以莫耳比率計Al2O3:MO=1:0.95~1.05。 又,Al2O3粉末與MO粉末之混合方法並無特別限制,可為乾式之混合方法,亦可為濕式之混合方法。作為此種混合方法,可較佳地使用如下方法:通常之藉由球磨機之混合、藉由行星式球磨機之混合、藉由珠磨機之混合、藉由超音波之攪拌混合等。作為使用濕式之混合方法時的乾燥方法,可為自然乾燥,亦可為使用噴霧乾燥機等之強制乾燥。 (晶質Al2MO4粉末之製作步驟) 製作晶質Al2MO4粉末之步驟(S20)係藉由鍛燒上述第1混合物而進行。第1混合物之鍛燒溫度較佳為800℃以上且未達1200℃。若鍛燒溫度未達800℃,則會殘留未反應之原料粉末而難以製作具有充分之結晶性的晶質Al2MO4粉末。若鍛燒溫度為1200℃以上,則藉由鍛燒所獲得之晶質Al2MO4粉末之粒徑變大,若直接使用,則於之後之燒結步驟中難以獲得緻密之燒結體,因此在燒結步驟前需要花費時間將晶質Al2MO4粉末粉碎。鍛燒環境並無特別限制,就抑制氧自粉末脫離且簡便之觀點而言,較佳為大氣環境。 可根據藉由ICP光譜分析所求出之化學組成、與藉由X射線繞射所鑑定之晶相而確認藉由鍛燒形成晶質Al2MO4粉末。 以此方式所獲得之晶質Al2MO4粉末較佳為平均粒徑為0.1 μm以上1.5 μm以下。此處,粉末之平均粒徑係採用利用光散射法而算出之值。 (第2混合物之製備步驟) 製備含有晶質Al2MO4粉末與In2O3粉末之第2混合物之步驟(S30)係藉由混合晶質Al2MO4粉末與In2O3粉末而進行。此處,In2O3粉末之純度並無特別限制,就提高所製造之導電性氧化物之品質之觀點而言,較佳為99.9質量%以上,更佳為99.99質量%以上。又,晶質Al2MO4粉末與In2O3粉末之混合比例並無特別限制,就提高導電性氧化物之導電性之觀點而言,較佳為以莫耳比率計晶質Al2MO4:In2O3=1:0.95~1。 又,晶質Al2MO4粉末與In2O3粉末之混合方法並無特別限制,可為乾式之混合方法,亦可為濕式之混合方法。作為此種混合方法,可較佳地使用通常之藉由球磨機之混合、藉由行星式球磨機之混合、藉由珠磨機之混合、藉由超音波之攪拌混合等方法。作為使用濕式之混合方法時的乾燥方法,可為自然乾燥,亦可為使用噴霧乾燥機等之強制乾燥。 又,於製造含有添加元素之導電性氧化物之情形時,與晶質Al2MO4粉末及In2O3粉末一併,混合含有選自由N、Al、Si、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、W、Sn及Bi所組成之群中之至少1種添加元素的原料粉末。該添加元素原料粉末並無特別限制,就抑制混入構成元素及添加元素以外之雜質元素與氧脫離之觀點而言,可較佳地使用AlN粉末、Al2O3粉末、SiO2粉末、TiO2粉末、V2O5粉末、Cr2O3粉末、ZrO2粉末、Nb2O3粉末、MoO2粉末、HfO2粉末、Ta2O3粉末、WO3粉末、SnO2粉末及Bi2O3粉末。藉由添加上述添加元素原料粉末,導電性氧化物成為含有選自由N、Al、Si、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、W、Sn及Bi所組成之群中之至少1種添加元素者,能夠製作出可製作場效遷移率較高之氧化物半導體膜的導電性氧化物。 (成形步驟) 於藉由將第2混合物成形而獲得成形體之步驟(S40)中,將第2混合物成形之方法並無特別限制,就生產性較高之觀點而言,可較佳地使用壓製成形、CIP(冷等靜壓壓製)成形、鑄漿成形等方法。又,就分階段地高效率地成形之觀點而言,較佳為於壓製成形後進而進行CIP成形。 (燒結步驟) 藉由對成形體進行燒結之步驟(S50),獲得導電性氧化物。成形體之燒結溫度根據成形體所含之晶質Al2MO4粉末(此處,M為選自由Zn及Mg所組成之群中之至少1種元素)之種類而不同。 於成形體含有晶質Al2ZnO4粉末作為晶質Al2MO4粉末之情形時,該成形體之燒結溫度較佳為1280℃以上且未達1500℃。若燒結溫度未達1280℃,則晶質Al2ZnO4粉末與In2O3粉末之燒結不充分,難以製作作為濺鍍之靶所必需的緻密之燒結體。若燒結溫度為1500℃以上,則無法形成晶質Al2ZnO4而僅形成晶質In2Al2(1-m)Zn1-qO7-p,因此藉由以導電性氧化物作為靶之濺鍍所獲得的氧化物半導體膜其特性變得不穩定,其表面粗糙度Ra變大,並且其蝕刻速率降低。此處,於成形體之燒結溫度為1280℃以上且未達1300℃之情形時,晶相係形成晶質Al2ZnO4及晶質In2O3。於成形體之燒結溫度為1300℃以上且未達1500℃之情形時,晶相係形成晶質Al2ZnO4及晶質In2Al2(1-m)Zn1-qO7-p。 於成形體含有晶質Al2MgO4粉末作為晶質Al2MO4粉末之情形時,該成形體之燒結溫度較佳為1300℃以上1500℃以下。若燒結溫度未達1300℃,則晶質Al2MgO4粉末與In2O3粉末之燒結不充分,難以製作作為濺鍍之靶所必需的緻密之燒結體。若燒結溫度高於1500℃,則Mg脫離,燒結體之組成產生不均而變為非均質。此處,若成形體之燒結溫度為1300℃以上且未達1390℃,則晶相係形成晶質Al2MgO4及晶質In2O3。於形成體之燒結溫度為1390℃以上且未達1500℃之情形時,晶相係形成晶質Al2ZnO4及晶質In2Al2(1-n)Zn1-tO7-s。 [實施例] [實施例A] 1.第1混合物之製備 使用球磨裝置,將Al2O3粉末(純度:99.99質量%、BET(Brunauer-Emmett-Teller,布厄特)比表面積:10 m2/g)與ZnO粉末(純度:99.99質量%、BET比表面積:4 m2/g)以Al2O3:ZnO=1:1之莫耳混合比率粉碎混合3小時,藉此製作Al2O3-ZnO混合物作為第1混合物。作為粉碎混合時之分散介質,係使用水。利用噴霧乾燥機將該混合物乾燥,藉此獲得第1混合物。 2.晶質Al2ZnO4粉末之製作 將所獲得之第1混合物裝入至氧化鋁製坩堝中,於大氣環境中以900℃之溫度鍛燒5小時。如此,獲得由晶質Al2ZnO4所形成之鍛燒粉末即晶質Al2ZnO4粉末。晶質Al2ZnO4之存在係根據藉由ICP光譜分析所求出之化學組成、與藉由X射線繞射所鑑定之晶相而確認。 3.第2混合物之製備 使用球磨裝置,將所獲得之晶質Al2ZnO4粉末(鍛燒粉末)與In2O3粉末(純度:99.99質量%、BET比表面積:5 m2/g)以晶質Al2ZnO4:In2O3=1:0.95之莫耳混合比率粉碎混合6小時,藉此製備In2O3-晶質Al2ZnO4混合物作為第2混合物。作為粉碎混合時之分散介質,係使用水。利用噴霧乾燥機將該混合物乾燥,藉此獲得第2混合物。 4.成形 於表面壓力為1.0 tf/cm2之條件下將所獲得之第2混合物壓製成形,且於各表面壓力為2.0 tf/cm2之條件下進行CIP成形,藉此獲得8個直徑100 mm、厚度約9 mm的圓板狀之成形體。 5.燒結 將所獲得之8個成形體以1250℃(例A1)、1280℃(例A2)、1300℃(例A3)、1350℃(例A4)、1375℃(例A5)、1400℃(例A6)、1450℃(例A7)、1500℃(例AR1)之溫度分別燒結5小時,藉此獲得晶質之組成比率互不相同的8個燒結體(例A1~A7及例AR1)作為導電性氧化物。 對於所獲得之燒結體(導電性氧化物),藉由以下方法算出其等之相對密度。首先,利用阿基米德法(Archimedes method)測定所獲得之燒結體之松密度。繼而,粉碎該燒結體,並利用比重瓶法測定該粉末之真密度。然後,用松密度除以真密度,藉此算出該燒結體之相對密度。 又,研磨該等導電性氧化物之主表面,對研磨後之主表面進行EDX(能量分散型X射線分析),藉此算出晶質Al2ZnO4、晶質In2Al2(1-m)Zn1-qO7-p及晶質In2O3於該等導電性氧化物之剖面面積中所占之比例。將結果總結於表1中。 6.藉由濺鍍所得之氧化物半導體膜之製作及評價 將所獲得之上述8個導電性氧化物作為靶,藉由DC(直流)磁控濺鍍分別製作8個氧化物半導體膜。具體而言,於濺鍍裝置之成膜室內的經水冷之基板座上,配置25 mm×25 mm×厚0.6 mm之合成石英玻璃基板作為成膜用基板。將上述導電性氧化物以其主表面與上述合成石英玻璃基板之主表面相對向之方式配置於距離40 mm處。此處,藉由金屬掩膜將合成石英玻璃基板之主表面的一部分區域被覆。 繼而,將成膜室內減壓至1×10-4 Pa。之後,於在合成石英玻璃基板與導電性氧化物(靶)之間放入有擋板(shutter)之狀態下,向成膜室內導入Ar氣體直至達到1 Pa之壓力為止,施加30 W之直流電力引起濺鍍放電,藉此將導電性氧化物(靶)表面清潔(預濺鍍)10分鐘。然後,向成膜室內導入Ar氣體直至達到20 Pa之壓力為止,施加50 W之直流電力引起濺鍍放電,移除上述擋板,進行1小時成膜而形成氧化物半導體膜。再者,基板座並未特別施加偏壓電壓,僅經水冷。形成氧化物半導體膜後,自成膜室中取出合成石英玻璃基板,可見僅於合成石英玻璃基板上未由金屬掩膜覆蓋的區域形成有In-Al-Zn系複合氧化物(IAZO)之氧化物半導體膜。對所獲得之氧化物半導體膜,藉由X射線繞射(Rigaku公司製造之SmartLab)評價其結晶性,結果為非晶質(非晶形)。 (1)表面粗糙度Ra之評價 藉由AFM(原子力顯微鏡),於10 μm×10 μm見方之範圍內測定所獲得之氧化物半導體膜之表面粗糙度Ra。將其結果總結於表1中。 (2)蝕刻速率之評價 於合成石英玻璃基板上,利用觸針式表面粗糙度計測定形成有氧化物半導體膜之區域與由金屬掩膜覆蓋而未形成氧化物半導體膜之區域之間的階差,藉此求出所形成之氧化物半導體膜之厚度。 其後,製備以莫耳比率計磷酸:乙酸:水=4:1:100之蝕刻水溶液,將形成有氧化物半導體膜之合成石英玻璃基板浸漬於該蝕刻液內。此時,蝕刻液係於熱浴內升溫至50℃。將浸漬時間設定為2分鐘,利用觸針式表面粗糙度計測定於此其間未被蝕刻而殘留的氧化物半導體膜之厚度。用蝕刻前後氧化物半導體膜之厚度差除以蝕刻時間,藉此算出蝕刻速率。將結果總結於表1中。 根據表1可明確,如例A1~A7所示般,含有In、Al、Zn、O且含有晶質Al2ZnO4之導電性氧化物藉由將其作為靶進行濺鍍,可製作具有穩定之特性且蝕刻速率較高之氧化物半導體膜。進而,如例A3~A7所示般,晶質Al2ZnO4於剖面面積中所占之比例為10%以上60%以下之導電性氧化物藉由將其作為靶進行濺鍍,可製作表面粗糙度Ra細微之氧化物半導體膜。 [實施例B] (例B1~B6) 於實施例B之例B1~B6中,製作含有晶質Al2MgO4與晶質In2Al2(1-n)Mg1-nO7-4n(0≦n<1)之導電性氧化物。 1.製備第1混合物 將Al2O3粉末(純度:99.99質量%、BET比表面積:5 m2/g)與MgO粉末(純度:99.99質量%、BET比表面積:6 m2/g),以莫耳混合比率成為Al2O3:MgO=1:1之方式裝入於球磨裝置中。使用水作為分散溶劑將該等粉末粉碎混合30分鐘。其後,藉由噴霧乾燥機使水揮發,藉此獲得包含Al2O3-MgO混合物之第1混合物。 2.晶質Al2MgO4粉末之製作 繼而,將上述之第1混合物裝入至氧化鋁製坩堝中,於900℃之大氣環境中進行5小時之鍛燒,藉此獲得晶質Al2MgO4粉末。晶質Al2MgO4之存在係根據藉由ICP光譜分析所求出之化學組成、與藉由X射線繞射所鑑定之晶相而確認。 3.第2混合物之製備 將上述晶質Al2MgO4粉末與In2O3粉末(純度:99.99質量%、BET比表面積:8 m2/g),以莫耳混合比率成為Al2MgO4:In2O3=1:1之方式裝入於球磨裝置中。繼而,使用水作為分散溶劑將該等粒子粉碎混合6小時。其後,藉由噴霧乾燥機使水揮發,藉此獲得第2混合物即In2O3-晶質Al2MgO4混合物。 4.成形 於表面壓力為1.0 tf/cm2之條件下將上述所獲得之第2混合物壓製成形,且於各表面壓力2.0 tf/cm2下進行CIP成形,藉此製作直徑100 mm、厚度約9 mm的圓板狀之成形體。 5.燒結 將以此方式所獲得之成形體於大氣環境中、於以下之表2之「燒結溫度」之欄中所示的溫度下煅燒5小時,藉此製作導電性氧化物。再者,藉由將燒結溫度設為1390℃以上1500℃以下,而獲得含有晶質Al2MgO4及晶質In2Al2(1-n)Mg1-nO7-4n之導電性氧化物。 (例B7) 除相對於例B1而言第2混合物之製備方法與成形體之燒結溫度不同以外,以與例B1同樣之製造方法製作例B7之導電性氧化物。亦即,例B7中,於製備第2混合物之步驟中,除晶質Al2MgO4粉末與In2O3粉末以外,亦添加AlN粉末(純度:99.99質量%、BET比表面積:5 m2/g),藉此獲得包含In2O3-AlN-晶質Al2MgO4混合粉體之第2混合物。使用該第2混合物,於1390℃之燒結溫度下,於大氣壓、氮氣環境下燒結5小時,藉此製作直徑100 mm、厚度約9 mm的圓板狀之成形體。 (例B8~B20) 於例B8~B20中,除相對於例B7而言第2混合物之製備方法與成形體之燒結溫度及燒結環境不同以外,以與例B7同樣之製造方法製作例B8~B20之導電性氧化物。亦即於例B8~B20中,將例B7之AlN粉末替換為含有添加元素之氧化物粉末(Al2O3粉末、SiO2粉末、TiO2粉末、V2O5粉末、Cr2O3粉末、ZrO2粉末、Nb2O3粉末、MoO2粉末、HfO2粉末、Ta2O3粉末、WO3粉末、SnO2粉末、Bi2O3粉末),以表2所示之燒結溫度於大氣中進行燒結,製作例B8~B20之導電性氧化物。 (例BR1) 於例BR1中,藉由與例B1~B20之導電性氧化物之製造方法不同的步驟製作導電性氧化物。亦即,於例BR1之導電性氧化物之製造方法中,首先將Al2O3粉末(純度:99.99質量%、BET比表面積:11 m2/g)、MgO粉末(純度:99.99質量%、BET比表面積:4 m2/g)及In2O3粉末(純度:99.99質量%、BET比表面積:5 m2/g)以莫耳混合比率成為In2O3:Al2O3:MgO=1:1:1之方式裝入於珠磨裝置中。繼而,使用水作為分散溶劑將該等混合粉末粉碎混合30分鐘。其後,藉由噴霧乾燥機使水揮發,藉此獲得In2O3-Al2O3-MgO混合物。 繼而,將所獲得之混合物裝入至氧化鋁製坩堝中,於1200℃之大氣環境中進行5小時之鍛燒,藉此獲得晶質In2Al2MgO7粉末。 藉由單軸加壓成形使上述所獲得之晶質In2Al2MgO7粉末成形,藉此製作直徑為100 mm,厚度為9 mm的圓板狀之成形體。將該成形體於大氣環境中以1500℃煅燒5小時,藉此製作例BR1之導電性氧化物。由於粉末之混合方法及燒結溫度為1500℃以上,因此僅形成晶質In2Al2MgO7,未形成晶質MgAl2O4及晶質In2Al2(1-n)Mg1-nO7-4n。 (例BR2) 於例BR2中,藉由與例B1~B20之導電性氧化物之製造方法不同的步驟製作導電性氧化物。亦即,首先將In2O3粉末(純度:99.99質量%、BET比表面積:5 m2/g)投入至珠磨裝置中。繼而,使用水作為分散溶劑將In2O3粉末粉碎混合30分鐘。其後,藉由噴霧乾燥機使水揮發,藉此獲得僅由In2O3所組成之造粒粉末。 繼而,藉由單軸加壓成形使上述所獲得之造粒粉末成形,藉此製作直徑為100 mm、厚度為9 mm的圓板狀之成形體。將以此方式所製作之成形體於大氣環境中以1500℃燒結5小時,藉此製作例BR2之導電性氧化物。 (例B21~B26) 除相對於例B1而言第1混合物及第2混合物中之原料粉末之混合比率不同,並且燒結溫度未達1390℃以外,以與例B1同樣之方法製作例B21~B26之導電性氧化物。亦即於例B21~B26中,以成為表3之「原子濃度比率」之欄中所示的原子比率之方式調整Al2O3粉末、MgO粉末及In2O3粒子之混合比率。再者,藉由將燒結溫度設為未達1390℃,導電性氧化物不含晶質In2Al2(1-n)Mg1-nO7-4n。 (例B27) 除相對於例B7而言燒結溫度不同以外,以與例B7同樣之方法製作例B27之導電性氧化物。再者,藉由將燒結溫度設為未達1390℃,導電性氧化物不含晶質In2Al2(1-n)Mg1-nO7-4n。 (例B28~B40) 除相對於例B8~B20之各者而言燒結溫度不同以外,以與例B8~B20之各者同樣之方法製造例B28~B40之各者之導電性氧化物。再者,藉由將燒結溫度設為未達1390℃,導電性氧化物不含晶質In2Al2(1-n)Mg1-nO7-4n。 對B1~B40及例BR1~BR2之導電性氧化物,使用ICP光譜分析測定In、Al及Mg之原子比率(單位:原子%)。將其結果示於表2及3中的「原子濃度比率」之欄。又,將例B1~B40及例BR1~BR2中所製作的導電性氧化物以任意一面切斷,使用分析型掃描式電子顯微鏡對該切斷面進行螢光X射線分析,藉此算出晶質Al2MgO4於導電性氧化物之剖面面積中所占之比例及晶質In2O3於導電性氧化物之剖面面積中所占之比例。將其結果示於表2及3中的「剖面面積中之Al2MgO4比例」、「剖面面積中之In2O3比例」之欄中。再者,於例B1~B20之導電性氧化物之剖面及藉由X射線繞射之評價中,未能確認到晶質In2O3之區域。 對例B1~B40中所製作之導電性氧化物,藉由粉末X射線繞射法進行結晶分析。具體而言,照射Cu之Kα射線作為X射線,測定繞射角2θ,根據該繞射波峰確認In2O3及Al2MgO4均為晶質。另一方面,關於例BR1中所製作之導電性氧化物,即便使用藉由分析型掃描式電子顯微鏡及X射線繞射之評價亦未確認到Al2MgO4之存在,且藉由X射線繞射確認到In2Al2MgO7之繞射波峰。 又,藉由SIMS,算出例B1~B40及例BR1~BR2所製作的導電性氧化物中添加元素之組成及該添加元素於每1 cm3之原子數(atom/cm3)。將其結果示於表2及3之「添加元素」及「濃度」之欄中。 (評價:場效遷移率) 將於例B1~B40及例BR1~BR2中所獲得之導電性氧化物作為靶使用,藉由DC(直流)磁控濺鍍法形成氧化物半導體膜。製作包含該氧化物半導體膜作為通道層之TFT,算出各TFT之場效遷移率,藉此評價例B1~B40及例BR1~BR2之導電性氧化物之性能。 上述場效遷移率具體而言係以如下之方式算出。首先,將於例B1~B40及例BR1~BR2中所獲得的導電性氧化物加工成直徑為3英吋(76.2 mm)且厚度為5.0 mm之靶。繼而,以直徑為3英吋之面成為濺鍍面之方式將靶配置於濺鍍裝置內。另一方面,於濺鍍裝置之經水冷之基板座上,配置包含25 mm×25 mm×0.5 mm之導電性Si晶圓(<0.02 Ωcm)之成膜用基板,用金屬掩膜將成膜用基板之表面之一部分覆蓋。此時,靶與成膜用基板之間的距離為40 mm。 然後,對濺鍍裝置內進行真空抽吸直至達到1×10-4 Pa左右為止,於在基板與靶之間放入有擋板之狀態下,向成膜室中導入Ar氣體使成膜室內之壓力為1 Pa,進而對靶施加120 W之直流電力進行濺鍍放電,藉此將靶表面清潔(預濺鍍)10分鐘。 其後,將以流量比率計含有15體積%之氧氣的Ar氣體導入至成膜室內使成膜室內之壓力為0.8 Pa,進而對靶施加120 W之濺鍍直流電力,藉此於玻璃基板上形成厚度70 nm之氧化物半導體膜。再者,基板座僅經水冷而並未施加偏壓電壓。 為將如此所製作之氧化物半導體膜加工成特定之通道寬度及通道長度,於氧化物半導體膜上塗佈特定形狀之抗蝕劑且進行曝光、顯影。繼而,將附有該氧化物半導體膜之玻璃基板浸漬於調整為磷酸:乙酸:水=4:1:100之莫耳比率的蝕刻水溶液中,藉此將氧化物半導體膜蝕刻成特定之通道寬度及通道長度。 然後,以氧化物半導體膜上之內的僅形成源極電極及汲極電極之部分露出之方式,於氧化物半導體膜上塗佈抗蝕劑且進行曝光、顯影。對於上述未形成有抗蝕劑之部分(電極形成部),使用濺鍍法依次形成包含Ti之金屬層、包含Al之金屬層、包含Mo之金屬層,藉此以Ti/Al/Mo之3層結構形成膜厚為100 nm之源極電極及汲極電極。其後,剝離氧化物半導體膜上之抗蝕劑,藉此製作具備含有In-Al-Mg-O之氧化物半導體膜作為通道層之TFT。 對以上述方式所製作之TFT,以如下方式算出場效遷移率(μfe)。首先,於TFT之源極電極與汲極電極之間施加5 V之電壓,使對源極電極與包含Si晶圓之閘極電極之間施加之電壓(Vgs)自-10 V變化為20 V,將其時之汲極電流(Ids)代入至式(1)中,藉此算出Vgs=10 V時之gm值。繼而,將上述所算出之gm值代入至式(2)中,進而代入W=20 μm、L=15 μm,藉此算出場效遷移率(μfe)。將該結果示於表2及3之「場效遷移率」之欄中。再者,場效遷移率之值越高,表示TFT之特性越良好。 gm=dIds/dVgs………式(1) μfe=gm.L/(W.Ci.Vds)………式(2) (評價結果與考察) 根據表2及3所示之結果,使用例B1~B40之導電性氧化物所製作的氧化物半導體膜、與使用例BR1~BR2之導電性氧化物所製作的氧化物半導體膜相比,TFT之場效遷移率顯示較高之值。認為其係由於例B1~B40之導電性氧化物含有In、Al、Mg、O,且含有晶質Al2MgO4作為晶質所致。 應認為此次所揭示之實施形態及實施例於所有方面均為例示而並非限制性者。本發明之範圍並非上述之說明,而意欲包含由申請專利範圍所示,且與申請專利範圍為均等之含義及範圍內的所有變更。 [產業上之可利用性] 本發明之導電性氧化物可作為濺鍍成膜之靶而較佳地使用。 S10‧‧‧製備第1混合物之步驟 S20‧‧‧製作晶質Al2MO4粉末之步驟 S30‧‧‧製備第2混合物之步驟 S40‧‧‧獲得成形體之步驟 S50‧‧‧對成形體進行燒結之步驟 圖1係表示導電性氧化物之製造方法的流程圖。 S10‧‧‧製備第1混合物之步驟 S20‧‧‧製作晶質Al2MO4粉末之步驟 S30‧‧‧製備第2混合物之步驟 S40‧‧‧獲得成形體之步驟 S50‧‧‧對成形體進行燒結之步驟
权利要求:
Claims (14) [1] 一種導電性氧化物,其含有In、Al、選自由Zn及Mg所組成之群中之至少1種元素M、及O,且含有晶質Al2MO4。 [2] 如請求項1之導電性氧化物,其含有晶質Al2ZnO4作為上述晶質Al2MO4。 [3] 如請求項2之導電性氧化物,其中上述晶質Al2ZnO4於上述導電性氧化物之剖面面積中所占之比例為10%以上60%以下。 [4] 如請求項2或3之導電性氧化物,其進而含有選自由晶質In2Al2(1-m)Zn1-qO7-p(0≦m<1、0≦q<1、0≦p≦3m+q)及晶質In2O3所組成之群中之至少1種晶質。 [5] 如請求項1之導電性氧化物,其含有晶質Al2MgO4作為上述晶質Al2MO4。 [6] 如請求項5之導電性氧化物,其中上述晶質Al2MgO4於上述導電性氧化物之剖面面積中所占之比例為2%以上60%以下。 [7] 如請求項5或6之導電性氧化物,其進而含有選自由晶質In2Al2(1-n)Mg1-tO7-s(0≦n<1、0≦t<1、0≦s≦3n+t)及晶質In2O3所組成之群中之至少1種晶質。 [8] 如請求項1至3及5、6中任一項之導電性氧化物,其中將In、Al及M之合計之原子比率設為100原子%時,係含有10~50原子%之In、10~50原子%之Al、15~40原子%之M。 [9] 如請求項1至3及5、6中任一項之導電性氧化物,其進而含有選自由N、Al、Si、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、W、Sn及Bi所組成之群中之至少1種添加元素。 [10] 如請求項1至3及5、6中任一項之導電性氧化物,其係用於濺鍍法之靶。 [11] 一種氧化物半導體膜,其係使用如請求項1至3及5、6中之任一項之導電性氧化物而形成者。 [12] 一種導電性氧化物之製造方法,其係包含如下步驟:當將選自由Zn及Mg所組成之群中之至少1種元素設為M時,製備含有Al2O3粉末與MO粉末之第1混合物之步驟(S10);藉由鍛燒(calcination)上述第1混合物而製作晶質Al2MO4粉末之步驟(S20);製備含有上述晶質Al2MO4粉末與In2O3粉末之第2混合物之步驟(S30);藉由將上述第2混合物成形而獲得成形體之步驟(S40);及對上述成形體進行燒結之步驟(S50)。 [13] 如請求項12之導電性氧化物之製造方法,其中上述MO粉末為ZnO粉末,上述晶質Al2MO4粉末為晶質Al2ZnO4粉末,製作上述晶質Al2ZnO4粉末之步驟(S20)中上述第1混合物之鍛燒溫度為800℃以上且未達1200℃,對上述成形體進行燒結之步驟(S50)中上述成形體之燒結溫度為1280℃以上且未達1500℃。 [14] 如請求項12之導電性氧化物之製造方法,其中上述MO粉末為MgO粉末,上述晶質Al2MO4粉末為晶質Al2MgO4粉末,製作上述晶質Al2MgO4粉末之步驟(S20)中上述第1混合物之鍛燒溫度為800℃以上且未達1200℃,對上述成形體進行燒結之步驟(S50)中上述成形體之燒結溫度為1300℃以上1500℃以下。
类似技术:
公开号 | 公开日 | 专利标题 JP6137382B2|2017-05-31|導電性酸化物およびその製造方法ならびに酸化物半導体膜の製造方法 TWI403602B|2013-08-01|In-Ga-Zn-based oxide sputtering target JP5288141B2|2013-09-11|スパッタリングターゲット、それを用いたアモルファス酸化物薄膜の形成方法、及び薄膜トランジスタの製造方法 JPWO2009142289A6|2013-03-04|スパッタリングターゲット、それを用いたアモルファス酸化物薄膜の形成方法、及び薄膜トランジスタの製造方法 TWI648241B|2019-01-21|Oxide sintered body, method of manufacturing the same, sputtering target, and semiconductor device TWI546400B|2016-08-21|Sputtering target JP4891381B2|2012-03-07|In−Ga−Zn系焼結体、及びスパッタリングターゲット TW201902857A|2019-01-16|氧化物燒結體及半導體裝置 CN107001146B|2020-03-03|氧化物烧结材料、氧化物烧结材料的制造方法、溅射靶和半导体装置的制造方法 JP2013001590A|2013-01-07|導電性酸化物およびその製造方法、ならびに酸化物半導体膜 TW201808810A|2018-03-16|氧化物燒結體及其製造方法、濺鍍靶、以及半導體裝置之製造方法 JP5407969B2|2014-02-05|導電性酸化物とその製造方法 JP5494082B2|2014-05-14|導電性酸化物とその製造方法 JP2012017258A|2012-01-26|In−Ga−Zn系酸化物スパッタリングターゲット JP5526904B2|2014-06-18|導電性酸化物焼結体とその製造方法 JP5526905B2|2014-06-18|導電性酸化物焼結体の製造方法 JP5333525B2|2013-11-06|導電性酸化物およびその製造方法、ならびに酸化物半導体膜 JP5811877B2|2015-11-11|導電性酸化物およびその製造方法 JP2016060686A|2016-04-25|酸化物焼結体およびその製造方法、スパッタリング用ターゲット、ならびに半導体デバイス JP2012056842A|2012-03-22|In−Ga−Zn系酸化物、酸化物焼結体、及びスパッタリングターゲット
同族专利:
公开号 | 公开日 CN103608310B|2016-02-03| JP2016153370A|2016-08-25| JP5929911B2|2016-06-08| JPWO2012173108A1|2015-02-23| KR20140036176A|2014-03-25| JP6137382B2|2017-05-31| TWI532864B|2016-05-11| KR102003077B1|2019-07-23| WO2012173108A1|2012-12-20| CN103608310A|2014-02-26|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 JPH06191844A|1992-12-25|1994-07-12|Hoya Corp|透明導電性酸化物| JP3947575B2|1994-06-10|2007-07-25|Hoya株式会社|導電性酸化物およびそれを用いた電極| JP3501614B2|1997-02-26|2004-03-02|株式会社オプトロン|Ito焼結体およびその製造方法ならびに前記ito焼結体を用いたito膜の成膜方法| KR100753328B1|2003-03-04|2007-08-29|닛코킨조쿠 가부시키가이샤|스퍼터링 타겟트, 광 정보기록 매체용 박막 및 그 제조방법| JP5358891B2|2006-08-11|2013-12-04|日立金属株式会社|酸化亜鉛焼結体の製造方法| KR101312259B1|2007-02-09|2013-09-25|삼성전자주식회사|박막 트랜지스터 및 그 제조방법| JP5244327B2|2007-03-05|2013-07-24|出光興産株式会社|スパッタリングターゲット| US8569192B2|2008-07-15|2013-10-29|Tosoh Corporation|Sintered complex oxide, method for producing sintered complex oxide, sputtering target and method for producing thin film| TWI393695B|2009-10-02|2013-04-21|Chunghwa Picture Tubes Ltd|奈米粉末漿體的製造方法及其應用| JP5081959B2|2010-08-31|2012-11-28|Jx日鉱日石金属株式会社|酸化物焼結体及び酸化物半導体薄膜|JP6141332B2|2013-01-15|2017-06-07|出光興産株式会社|スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法| DE102013103679A1|2013-04-11|2014-10-30|Heraeus Materials Technology Gmbh & Co. Kg|Licht absorbierende Schicht und die Schicht enthaltendes Schichtsystem, Verfahren zur dessen Herstellung und dafür geeignetes Sputtertarget| JP6152220B2|2014-03-14|2017-06-21|大日精化工業株式会社|樹脂組成物及び塗工液| EP2933825B1|2014-03-31|2017-07-05|Flosfia Inc.|Crystalline multilayer structure and semiconductor device| CN105063559A|2015-08-17|2015-11-18|基迈克材料科技(苏州)有限公司|增强光电性能Zr元素掺杂AZO靶材| JPWO2018096992A1|2016-11-25|2019-10-17|宇部マテリアルズ株式会社|物理蒸着用ターゲット部材及びスパッタリングターゲット部材並びに物理蒸着膜及び層構造の製造方法|
法律状态:
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 JP2011132982||2011-06-15|| JP2011139631||2011-06-23|| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|